A Learning Algorithm for the Appearance-Based Recognition of Complex Objects
نویسندگان
چکیده
This paper addresses the problem of recognizing complex objects in images. The proposed approach is based on a prototype-centered object representation which describes objects as sets of local features. During an evolutionary learning step the model is derived from a set of sample images. The proceeding of the training is measured with regard to the recognition rate as well as the coverage of the training samples. The proposed method is tested by the recognition of 14 classes of cars in highway scenes. A classification rate of 98 percent is achieved.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملAppearance Based Recognition of Complex Objects by Genetic Prototype-Learning
This paper describes a method to recognize and classify complex objects in digital images. To this end, a uniform representation of prototypes is introduced. The notion of a prototype describes a set of local features which allow to recognize objects by their appearance. During a training step a genetic algorithm is applied to the prototypes to optimize them with regard to the classification ta...
متن کاملA Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population
Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...
متن کاملNeuro-ANFIS Architecture for ECG Rhythm-Type Recognition Using Different QRS Geometrical-based Features
The paper addresses a new QRS complex geometrical feature extraction technique as well as its application for electrocardiogram (ECG) supervised hybrid (fusion) beat-type classification. To this end, after detection and delineation of the major events of ECG signal via a robust algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images ...
متن کامل